Adopted as a NMRA Standard

The OpenLCB Standard document appended to this cover sheet has been formally adopted as a NMRA Standard by the NMRA Board of Directors on the date shown in the Adopted column in the Version History table below.

Version History

<table>
<thead>
<tr>
<th>Date</th>
<th>Adopted</th>
<th>Summary of Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sep 17, 2010</td>
<td></td>
<td>Initial version prepared for Feb-2011 NMRA BoD meeting.</td>
</tr>
<tr>
<td>Feb 17, 2015</td>
<td>Feb 20, 2016</td>
<td>Changed title to “Layout Command Control”</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Changed document numbering and file name</td>
</tr>
<tr>
<td>Feb 8, 2016</td>
<td></td>
<td>Minor grammatical corrections and readability improvements as well as the following specific changes:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Changed 4 Physical Interconnection (Normative) to:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>○ change pins 4&5 from "Reserved" to "ALT_L" & "ALT_H"</td>
</tr>
<tr>
<td></td>
<td></td>
<td>○ reduce the maximum voltage ratings down from 100V down to 27V on pins 4&5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Added new 6 ALT_L / ALT_H section</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Added 6.1 DCC Signal section</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Added 9 Injection Current (Normative) section</td>
</tr>
</tbody>
</table>
1 Introduction (Informative)
This document defines the physical layer for carrying OpenLCB-CAN over a single Controller Area Network (CAN) bus. It is not otherwise normative.

2 Intended Use (Informative)
Conforming OpenLCB CAN nodes can be connected by cables to form a linear CAN bus with optional short stubs. OpenLCB CAN nodes generally have two RJ45 modular connectors and can be daisy-chained together with suitable computer-network (“Ethernet”) cables. A CAN terminator is installed by the user at each end of the main bus.

A limited amount of power can be distributed via the cable, allowing a few nodes to draw their power from a nearby (less than 20 ft / 6m) source attached to the common bus.

3 References and Context (Normative)
In this document

- “RJ45” refers to the miniature 8 position unkeyed plug and jack defined in sections Section 6.1.1.3 and Section 6.1.1.4, respectively, of the TIA-968-A specification.
- “UTP” refers to CAT-3 or better cable as defined in TIA/EIA-568-B or the successor TIA/EIA- 568-C. This specifically includes CAT-5e cable.
- “CAN” refers to the electrical and protocol specifications as defined in ISO 11898-1:2003 and ISO 11898-2:2003 and their successors.

External certification of parts shall be accepted for conformance to these standards.
Conformance with a later version of a standard shall be accepted as conformance with the referenced versions.

4 Physical Interconnection (Normative)
CAN connections between nodes shall be made using UTP cable. There shall be a RJ45 plug on the cable and RJ45 jack on the node unless the cable is permanently attached to the node.
The signal, conductor and pair assignments shall be:

<table>
<thead>
<tr>
<th>Conductor</th>
<th>Signal Name</th>
<th>TIA/EIA-568-A (Informative)</th>
<th>TIA/EIA-568-B (Informative)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CAN_H</td>
<td>white/green</td>
<td>white/orange</td>
</tr>
<tr>
<td>2</td>
<td>CAN_L</td>
<td>green</td>
<td>orange</td>
</tr>
<tr>
<td>3</td>
<td>CAN_GND</td>
<td>white/orange</td>
<td>white/green</td>
</tr>
<tr>
<td>4</td>
<td>ALT_L</td>
<td>blue</td>
<td>blue</td>
</tr>
<tr>
<td>5</td>
<td>ALT_H</td>
<td>white/blue</td>
<td>white/blue</td>
</tr>
<tr>
<td>6</td>
<td>CAN_SHIELD</td>
<td>orange</td>
<td>green</td>
</tr>
<tr>
<td>7</td>
<td>PWR_NEG</td>
<td>white/brown</td>
<td>white/brown</td>
</tr>
<tr>
<td>8</td>
<td>PWR_POS</td>
<td>brown</td>
<td>brown</td>
</tr>
</tbody>
</table>

Cables, including cables attached to nodes, shall carry conductors 1 & 2 as a pair, and conductors 3 & 6 as a pair.

Cables may, but are not required to, carry conductors 4 and 5. Conductors 4 and 5, if present, shall be carried as a pair.

Cables may, but are not required to, carry conductors 7 and 8. Conductors 7 and 8, if present, shall be carried as a pair.

If a node provides two or more connections, conductors 1 through 8 shall be provided on all connections. Conductors 1 through 7 shall be connected in parallel on all connections. If the node does not provide power on pin 8 on all connectors, pin 8 on all connectors shall be connected in parallel. All wiring discussed in this paragraph shall be rated to carry at least 1A.
Nodes shall connect conductors 3 and 6. This connection shall be rated to carry at least 1A.

A node may, but is not required to, connect conductor 7 with conductors 3 and 6. Nodes that require conductor 7 to be connected to conductors 3 and 6 for proper operation shall connect conductor 7 to conductors 3 and 6.

Voltages of up to 27volts AC or either polarity DC on the ALT_L / ALT_H conductors 4 and 5 shall not damage the node nor prevent normal operation of the node.

Voltages of up to 27 volts AC or either polarity DC on the PWR_NEG / PWR_POS conductors shall not permanently damage the node.

5 Data Transport (Normative)

Data shall be transferred using a CAN signal at 125kbps and CAN frame protocol.

Any devices providing bus termination shall conform to CAN requirements for that termination.

A node may, but is not required to, provide a method for bus termination as part of the node. If so, there shall be a user-accessible method for enabling and disabling the termination, and the node shall be shipped from the original manufacturer with the termination disabled.

6 ALT_L / ALT_H

The ALT_L / ALT_H pins 4 and 5 are available for alternate uses. This section describes the currently approved uses for the ALT_L / ALT_H conductors. Additional uses may be approved and added to this document in the future. All uses of ALT_L/ALT_H shall be visibly labeled on the node, and documented in the accompanying product literature.

6.1 DCC Signal

NMRA standard S-9.1.2 defines the “Power Station Interface” for DCC power stations, more commonly known as DCC boosters. ALT_L / ALT_H may, but are not required to, be used to carry the “Power Station Interface” signals as described in NMRA standard S-9.1.2.

An OpenLCB node that is a source or consumer of the DCC signal shall conform to the requirements in NMRA standard S-9.1.2 in order to be considered in compliance with this standard. The requirements in NMRA standard S-9.1.2 are not applicable to OpenLCB nodes that do not source or consume a DCC signal.

Though the NMRA standard S-9.1.2 allows for a unipolar signal, an OpenLCB source node shall only be permitted to use a bipolar signal, ALT_L shall be the “negative” voltage and ALT_H shall be the “positive” voltage during the first half of a DCC bit as described in the NMRA standard S-9.1.2. The polarity shall be reversed during the second half of the DCC bit.

 ALT_L and ALT_H shall not have a connection to CAN_GND, CAN_SHIELD, PWR_NEG, or any other signal in the physical interconnection described in section 4 that is less than 20K ohms impedance at frequencies up to 1 MHz in any DCC signal consumer node.
DCC signal source nodes shall reference ALT_L / ALT_H to PWR_NEG. DCC signal source nodes shall not drive ALT_L / ALT_H to exceed +/-22 volts as referenced to each other or to PWR_NEG measured at the DCC signal source node into a 1K load.

A node that either sources or consumes the DCC signal shall be permanently labeled as such in a location visible to the user. Nodes that do not supply or consume the DCC signal do not require labeling, even though all nodes are required to pass through the ALT_L / ALT_H signals, regardless as to whether they consume or source these signals.

7 Supply of Power (Normative)
A node may, but is not required to, provide power to the cable PWR_POS / PWR_NEG conductors.

If a node provides power, it shall provide at least 9VDC and no more than 15VDC from zero current draw up to its specified maximum current. Its specified maximum current shall not exceed 500 mA. The specified maximum current shall be permanently written on the node in a location visible to the user. This label is required whether or not the node provides power to the cable.

8 Consumption of Power (Normative)
Nodes may, but are not required to, draw power from the PWR_POS / PWR_NEG conductors in the cable. Nodes shall not draw more than 500 mA at any PWR_POS / PWR_NEG voltage from 7.5VDC to 15VDC. Nodes that draw power shall operate properly with a supply voltage of 7.5VDC to 15VDC on the PWR_POS / PWR_NEG conductors. The maximum current drawn by each node shall be permanently written on that node in a location visible to the user. This label is required whether or not the node draws power from the cable.

9 Injection Current (Normative)
In addition to the current and voltage requirements placed on the individual conductors of the Physical Interconnection signals elsewhere in this document, the current on all eight conductors going into and out of a node shall sum to zero. In order to account for measurement tolerances, for testing purposes, zero current shall be defined as “zero +/-1mA”.

Copyright 2010-2016. All rights reserved. See http://openlcb.org/Licensing.html for license terms.
Table of Contents

1 Introduction (Informative).. 1

2 Intended Use (Informative).. 1

3 References and Context (Normative)... 1

4 Physical Interconnection (Normative).. 1

5 Data Transport (Normative).. 3

6 ALT_L / ALT_H... 3
 6.1 DCC Signal.. 3

7 Supply of Power (Normative).. 4

8 Consumption of Power (Normative).. 4

9 Injection Current (Normative).. 4