
NMRA Technical Note

Layout Command Control® (LCC)

CAN Frame Transfer

Feb 6, 2016 TN-9.7.2.1

 Adopted as a NMRA Technical Note
The OpenLCB Standard document appended to this cover sheet has been formally adopted as a
NMRA Standard by the NMRA Board of Directors on the date shown in the Adopted column in
the Version History table below.

 Version History
Date Adopted Summary of Changes

Feb 17, 2015 Initial version submitted for public comment

Feb 6, 2016 Feb 20, 2016 Minor grammatical corrections and readability improvements

5

Adopted as NMRA Technical Note TN-9.7.2.1

OpenLCB Technical Note

CAN Frame Transfer

Feb 6, 2016 Adopted

 1 Introduction
This Technical Note contains informative discussion and background for the corresponding “OpenLCB
CAN Frame Transfer Standard”. This Technical Note is not normative in any way.

For information on format and presentation conventions, see:

• OpenLCB Common Information Technical Note

The Frame Transfer layer of the OpenLCB-CAN stack lives above the CAN Physical Layer, and below
the Message Network layer. It is responsible for ensuring the reliable transport of the CAN frames that
make up OpenLCB-CAN messages.

CAN provides reliable transport between any two nodes on a CAN segment within limitations:

1. Every CAN header must be unique by construction. Collisions between frames with identical
headers and no data can result in lost frames; collisions between frames with identical headers
that do contain data do not result in well-defined behavior. Both cases must be avoided by
design to avoid intermittent problems.

2. CAN does not provide any indicator of which node sent a particular frame. Any node can send
any frame, and the receiving nodes have no CAN-provided mechanism for identifying the
source.

3. It's useful to have a way of addressing a frame to be processed by a specific node, but all CAN
nodes receive every frame.

4. CAN does not provide a “link up” or “link down” notification. Nodes may come and go from a
CAN segment at any time, and on an individual basis. In general, one can't assert that a
particular node is always present, always comes up first, or never comes up first.

5. On a busy segment, CAN frames are sent in a strict priority order, with the priority determined
by the content of the frame headers. If multiple nodes have frames to send at the same time, the
highest priority (lowest numerical value header) frame will be sent first. There is no concept of
“reserved bandwidth” except through frame priority, and low-priority frames may require
significant time to be sent.

 1.1 CAN Specialization for OpenLCB

CAN is adapted to OpenLCB use by a series of specifications which together mitigate the above
limitations:

1. Putting a unique source ID field in each frame ensures that the frames are unique (item 1
above), and provides a frame-level indicator of which node sent the frame for the purposes of
monitoring, debugging, etc. (item 2).

Copyright 2011--2016. All rights reserved. See http://openlcb.org/Licensing.html for license terms. Page 1 of 18 - Feb 6, 2016

5

10

15

20

25

30

http://openlcb.org/Licensing.html

Adopted as NMRA Technical Note TN-9.7.2.1OpenLCB CAN Frame Transfer Technical Note

2. Providing a destination address that allows a standard method of addressed communications
(item 3).

3. Using a distributed algorithm to determine the value for that ID field prevents needing a single
“manager” to provide it, thereby handling item 4.

4. The header bit fields discussed below are organized to handle item 5.

Further, OpenLCB-CAN is required to work with standard CAN components (e.g., interface chips,
bridges, computer adapters). These standard components must not require customization to operate
with OpenLCB. This forces a stringent requirement on protocol design, in that OpenLCB-CAN cannot
require specific timing, deliberate creation of error cases or non-standard error handling.

OpenLCB-CAN is required to work without user intervention; user presets are not required for the
CAN frame communications layer to work. The Node ID that's needed for communications is required
to be pre-configured into the node.

It's desirable for OpenLCB-CAN nodes to detect duplicate (non-unique) Node IDs, but 100% reliable
detection is not required.

 1.2 CAN collisions in loaded networks

Because of the CAN priority arbitration structure, the network can run at high utilization rates. Under
those circumstances, all nodes attempt to send their highest-priority frame, and the node with the
absolute highest priority frame (first dominant bit) wins. All other nodes wait until just after that frame
and try again.

This behavior greatly increases the probability of collisions when multiple nodes attempt to send
frames with the same header.

For example, consider 5 nodes each of which want to send the high-priority frames 1, ..., 5, plus one
more node A that wants to send the low priority frame 15. If all those nodes attempt to send at once,
the frames will arbitrate out and will be sent in the order 1, 2, 3, 4, 5, 15. If another node, B, also wants
to send a frame 15, and starts to send it at any point during that entire sequence, it will end up colliding
with the 15 that is being sent by A.

Particularly during layout startup, when many nodes have frames to send, this will result in an
unacceptable probability of error, unless the protocols have been designed to have as few header
collisions as possible, and absolutely no data collisions.

 2 Annotations to the Standard
This section provides background information on corresponding sections of the Standard document. It's
expected that two documents will be read together.

 2.1 Introduction

(Nothing to add to the Standard)

Copyright 2011--2016. All rights reserved. See http://openlcb.org/Licensing.html for license terms. Page 2 of 18 - Feb 6, 2016

35

40

45

50

55

60

65

http://openlcb.org/Licensing.html

Adopted as NMRA Technical Note TN-9.7.2.1OpenLCB CAN Frame Transfer Technical Note

 2.2 Intended Use

The OpenLCB protocol suite uses 6-byte Node ID values, but this protocol layer could be useful in
other contexts too. The Standard is therefore written so that any Node ID length through 7*12 = 84 bits
can be used in a straight-forward manner.

 2.3 References and Context

Note that the Standard references the Unique ID Standard, but only to the extent that each node is
required to have a unique ID as its node ID. The Standard would work equally well with a Unique ID
that was allocated via any mechanism, and with any length from 12 through 84 bits. OpenLCB uses a
48-bit unique ID as a node ID, which is assumed for the rest of this Technical Note.

 2.4 Frame Format

Standard header frames are also known as CAN 2.0A frames. Extended header frames are also known
as CAN 2.0B frames.

OpenLCB uses a straight-forward transfer of extended-header frames, using no special features, to
reduce complexity and increase robustness.

The Standard is silent on the uses for standard CAN (11-bit header) frames. The proper-operation
requirement is so nodes will tolerate them in case they're needed for other purposes. The Atmel
bootloader1 uses standard frames, for example, and the Microchip bootloader2 can also use them.
Allowing standard frames then allows the use of these bootloaders in parallel with OpenLCB-CAN.
Similarly, CBUS3 uses standard frames, and therefore could coexist with OpenLCB on a CAN segment.

This proper-operation requirement could also have been phrased as “shall ignore ...”, but the current
phrasing is thought to be more exact.

RTR frames are not used in the protocol because CAN semantics require a specific use for them, which
has been built into some silicon implementations. There are also some arbitration issues, see: CiA
Application Note 802 (2005)4 and http://www.thecanmancan.com/?tag=rtr for more information.

A CAN node can emit an overload frame when “Due to internal conditions, the node is not yet able to
begin reception of the next (frame). A node may generate a maximum of two sequential overload
frames to delay the start of the next (frame).” Those frames are 17 to 23 extra bit times each.5 The
protocol does not specify transmission of overload frames because not all CAN controller hardware can
deliberately send them. We require that nodes be able to handle them because some CAN controller
hardware will occasionally send them automatically.

1See Atmel application note “AVR076: AVR® CAN - 4K Boot Loader”
http://www.atmel.com:80/dyn/resources/prod_documents/doc8247.pdf

2See Microchip application note “AN247 A CAN Bootloader for PIC18F CAN Microcontrollers”
http://ww1.microchip.com/downloads/en/AppNotes/00247a.pdf

3See http://www.merg.org.uk/resources/lcb.html

4See http://www.can-cia.org/

5See http://rs232-rs485.blogspot.com/2009/11/can-bus-message-frames-overload.html

Copyright 2011--2016. All rights reserved. See http://openlcb.org/Licensing.html for license terms. Page 3 of 18 - Feb 6, 2016

70

75

80

85

90

95

5

10

http://openlcb.org/Licensing.html
http://rs232-rs485.blogspot.com/2009/11/can-bus-message-frames-overload.html
http://rs232-rs485.blogspot.com/2009/11/can-bus-message-frames-overload.html
http://www.thecanmancan.com/?tag=rtr
http://www.merg.org.uk/resources/lcb.html

Adopted as NMRA Technical Note TN-9.7.2.1OpenLCB CAN Frame Transfer Technical Note

People will occasionally refer to a restriction against having seven 1 bits in the top 11 bits of the CAN
header. There is no such restriction, and the statements are the result of a misunderstanding. There is a
restriction against having seven consecutive recessive bits on the CAN segment, but sending seven
consecutive 1 bits will not result in this. CAN uses a bit-stuffing technique to prevent that by inserting
a dominant bit on the line after the fifth consecutive recessive bit, and removing it at the receiver.

The CAN format has been allocated on nibble boundaries to make it easier to read dumps of packets.
The header is considered to be right (LSB) aligned.

The reserved most-significant bit (MSB) is likely to be used as a priority-boost bit in the future, for
example so that a gateway can gain priority access to the CAN segment for various operations that
require synchronization or atomicity. CAN encodes “do first” priority as 0 and “do later” as 1, so the
Standard requires that a 1 bit be sent. To preserve the utility of this, nodes must not require either a 1 or
0 on receipt. It is therefore not available as a protocol expansion bit.

When zero, the second-most-significant bit (0x0800,0000) indicates that the frame is for local control
on the CAN segment. Those frames should never leave the CAN segment. When one, it indicates that
the frame is carrying OpenLCB message traffic, which can leave the CAN segment to proceed to the
rest of the network; see the message-level documentation for more information on that.

The order of the header fields was chosen to get proper priority and access disambiguation via CAN's
standard mechanisms.

 2.5 States

In the Inhibited state, a node can only communicate on the CAN segment to allocate its Node ID
alias(es). This involves sending CID and RID frames with a tentative Node ID alias value. Once that
process is complete, the node has an assigned Node ID alias and can transition to the Permitted state,
where all communications are possible.

If a node fails, it should restart in the Inhibited state. In general, this state transition is not visible to
other nodes until the failed node starts communicating.

Designers of nodes that maintain alias pools, for example in gateways, need to carefully consider to
what extent the state applies to the entire node, and to what extent it applies to each individual alias in
the gateway pool. Anything that transmits OpenLCB frames on CAN needs to have reserved an alias
and have transitioned to Permitted state by transmitting an Alias Map Definition frame using that
particular alias. It can acquire and stock-pile other aliases for later use, putting them into Permitted
state either immediately or at some later time.

 2.6 CAN-specific Control Frames and Interactions

 2.6.1 Control Frame Format
RID, CID, etc, frames are assigned low numbers to give them higher transmission priority.

The coding is done to allow up to 7 separate CID sequence numbers, for use by protocols with longer
node IDs.

The coding of the 0x07NN field was selected to allow expansion of control fields in the 0x070N range,
and expansion of error indications in the 0x071N range.

Copyright 2011--2016. All rights reserved. See http://openlcb.org/Licensing.html for license terms. Page 4 of 18 - Feb 6, 2016

100

105

110

115

120

125

130

http://openlcb.org/Licensing.html

Adopted as NMRA Technical Note TN-9.7.2.1OpenLCB CAN Frame Transfer Technical Note

The block of CAN frames with Variable field from 0x1000 to 0x3FFF are not used by OpenLCB.
Although formally reserved, they can serve as a convenient 26-bit (with bit 28) address block for
experimentation and migration of other equipment.

 2.6.2 Interactions
Communications protocols are about more than formats. The protocols must also specify the
interactions in which the frames are used.

 2.6.2.1 Reserving a Node ID Alias

At the highest level, this algorithm is broadcasting the tentative alias to see if any other node is
checking the same tentative alias. If it is in use, the algorithm tries additional ones until it finds one
that's available. The following considerations had to be taken into account when designing the alias
reservation algorithm.

CAN arbitration reliably avoids collisions between frames with unique headers. It does not guarantee
non-overlapping transmission of frames from separate nodes with identical headers and no data; if the
timing is right, they may overlay each other such that only one frame appears to have been sent. It is
very difficult to ensure that two nodes always send initialization packets only at different times,
particularly given the load-related frame synchronization issue described earlier. In addition, CAN will
eventually signal an error if two packets with the same header and different data payloads collide, but
not all CAN interface hardware provides reliable indications about why that error occurred.

If a node sends out a check frame containing just the alias, then it could expect that another node to
complain if it has the same alias. This would work, except in the (admittedly unlikely) case where both
nodes send out the identical check frame simultaneously. Neither would recognize a conflict and both
would consider that they own the same alias. Therefore, a method needed to be found that guaranteed
that the check frame(s) are unique, even if they are sent simultaneously.

The CID/RID algorithm for finding aliases is designed to work with CAN arbitration, but without
causing any CAN errors. During execution of the algorithm, some frames might have the same header.
They therefore have to have the same contents, including null contents, or else a non-arbitration error
can occur.

If two nodes have taken the same tentative alias, at least one of the packets used in the broadcast will
not be identical between the two nodes, because their Node IDs are different in at least one bit. CAN
will successfully arbitrate this, and one node will receive the frame sent by the other node, causing it to
back off.

CAN transmissions are not atomic operations; a node can receive a frame between the time it tells the
hardware to send a frame and the time that frame is actually sent. It's therefore possible for both nodes
contending for the same alias value to back off and try again. The mechanism for generating the next
alias value to try must generate different values for different nodes to prevent this from becoming a
permanent lock-step error.

The delay at the end of the algorithm is to ensure that higher latency nodes, such as software nodes
working through USB converters, can reply to CID frames from nodes that come up on a working link.
OpenLCB is a soft-real-time system, and software that's interacting with it needs to have response

Copyright 2011--2016. All rights reserved. See http://openlcb.org/Licensing.html for license terms. Page 5 of 18 - Feb 6, 2016

135

140

145

150

155

160

165

170

http://openlcb.org/Licensing.html

Adopted as NMRA Technical Note TN-9.7.2.1OpenLCB CAN Frame Transfer Technical Note

times of a couple tens of milliseconds or better to be reliable. The algorithm provides a wait of a few
times that to enable those programs to take part.

Nodes may assign different alias values each time they are powered up. There is no requirement that
they always reserve and use the same one, nor is it possible to guarantee that they will.

The sequence number MMM is sent in descending order, 0x7, 0x6, …, to give priority on the CAN
segment to frames later in the process. This lets some nodes complete as early as possible and remove
themselves from contention.

Although it might be a useful debugging tool, putting the full Node ID in the data portion of the frames
can cause errors. Therefore, we decided not to do that.

Reserving a node ID alias value is separate from actually using it to take a node from Inhibited to
Permitted state. A gateway device, for example, might want want to stockpile a few reserved alias
values so that they can be rapidly associated with a specific node that wants to communicate. The node
ID that's broken into four parts for the CID values needs to be unique, but it does not have to be the one
that's eventually attached to the alias via an Alias Map Definition frame later on.

For example, a minimal sequence is four CID frames and a RID:

0x17123FED

0x16456FED

0x15789FED

0x14ABCFED

0x10700FED

The red nibbles show that these are four CID and one RID frames. The blue nibbles are the source ID
alias being tested and allocated. The yellow nibbles are the underlying Node ID of the node, in this case
12 34 56 78 9A BC.

 2.6.2.2 Transition to Permitted State

Note that there is no requirement that the node's alias value be consistent from one power-up reset to
the next.

 2.6.2.3 Node ID Alias validation

The Alias Mapping Enquiry provides a mechanism for determining which alias is associated with each
Node ID. This can be used when a new node attaches and needs the information. Operating nodes can
also track this information by watching CAN segment traffic for control frames, without having to use
the Alias Mapping Enquiry protocol.

The AME has two distinct usages:

• AME without Node ID: all active nodes reply with AMD and their Node ID;

• AME with Node ID: the receiving node which has a matching Node ID replies with AMD and
its Node ID;

Copyright 2011--2016. All rights reserved. See http://openlcb.org/Licensing.html for license terms. Page 6 of 18 - Feb 6, 2016

175

180

185

190

195

200

205

http://openlcb.org/Licensing.html

Adopted as NMRA Technical Note TN-9.7.2.1OpenLCB CAN Frame Transfer Technical Note

Node ID alias validation provides a way for a node joining a segment to rapidly learn the Node IDs and
Node ID aliases of the reachable nodes. This may be useful e.g. for a gateway that is connecting two
segments that are already in operation, or a monitor node that wants to determine that all nodes have
come up properly.

In general, simple or regular nodes won't need to do node alias validation. Those nodes don't need to
keep track of the Node ID to alias mapping, because they simply respond to frames they receive that
contain an alias. They just work with the alias itself. They also don't need to track other nodes' state,
etc.

In order to acquire the map between CAN aliases and node IDs, a gateway needs to be able to send a
CAN frame requiring "everybody reply with your node ID". Much like Ethernet gateway mapping, this
needs to return the node ID of just the specific CAN-attached hardware, not all the node IDs that can be
reached through one or more gateways, so it needs to be a segment-specific frame defined only at the
CAN level. It must not be a OpenLCB common message, though higher level protocols may want to
provide a similar capability that spans the entire OpenLCB installation.

 2.6.2.4 Transition to Inhibited State

The Alias Map Reset frame indicates that the alias value in the source address field may no longer be
associated with the same Node ID, and mapping tables should be reset.

The full node ID in the Alias Map Reset frame allows nodes that only are aware of an alias for their
conversation partner to convert that alias to a full node ID for later use.

This is a way to release or reuse an alias, while informing everybody that the node is no longer
reachable.

The alias is only released if this node allows some other node to allocate it via CID/RID frames. The
current node can still hang on to it if desired, for example to reuse it with another Node ID, by replying
to CID/RID frames from another node attempting to reserve it.

Gateways have to obtain unique aliases for remote nodes they are proxying onto the segment.
Gateways maintain the mapping between remote node's node ID and the local alias. If they need to
break that mapping, e.g. because they need to re-purpose a local alias due to resource limitations in the
mapping tables, they must send a "Alias Map Reset" frame to force nodes to drop their alias
information. "Alias Map Reset" is a CAN-specific frame limited to the segment, but all gateways on
the segment must act on it. This is then followed by an "Alias Map Definition" when the alias is
allocated to a new node ID.

Regular nodes won't need to do this. They stay active until they go instantly offline due to e.g. power-
off.

When a node goes to inhibited state or releases an alias by sending an Alias Map Reset frame, that's
telling other nodes that it can no longer be reached by using that alias. The last paragraph in this
section of the Standard gives the node receiving the Alias Map Reset 100msec to finish processing and
stop using the alias. If it still needs to send messages to the node that sent the Alias Map Reset, the
receiving node can attempt to reacquire a new alias via an Alias Map Enquire frame or higher-level

Copyright 2011--2016. All rights reserved. See http://openlcb.org/Licensing.html for license terms. Page 7 of 18 - Feb 6, 2016

210

215

220

225

230

235

240

245

http://openlcb.org/Licensing.html

Adopted as NMRA Technical Note TN-9.7.2.1OpenLCB CAN Frame Transfer Technical Note

message(s). If the alias has changed, that will work, but if the sending node has transitioned to
Inhibited state there will be no reply to the attempt to obtain the new alias.

 2.6.2.5 Node ID Alias Collision Handling

During normal operation in the Permitted state on a single CAN segment, a node should never
encounter a Node ID alias collision.

They can happen when network topology changes, for example when connecting two operating CAN
segments. In that case, nodes on the two segments have assigned aliases independently, and can have
used the same value. The underlying Node IDs do not collide, because they are assigned globally
uniquely, but that's not sufficient to ensure that the shorter aliases are independent.

In the case of a collision, one or both nodes will release the current alias. If it's the alias that was used
to go to Permitted state, e.g. the current alias being used by this node, the node must also drop back to
Inhibited state. The node(s) then can, but is not required to, return to Permitted state with a new alias.
In the process the node(s) will emit “Alias Map Reset” and “Alias Map Definition” frame that will
allow any gateway(s) to update their maps.

The preceding paragraph and the language of the Standard is complicated because it has to cover the
case of a gateway or similar node that has reserved a number of node ID aliases, but is not currently
using them as a node. In other words, the reservation CID/RID process has completed to reserve the
alias, but no mapping of the alias to a specific node ID has been published.

Simple leaf nodes don't keep internal mappings between full node IDs and aliases, so this transition
will not cause any problems for them unless they are currently in communication with another node,
e.g. in the middle of a sequence of frames for a datagram or stream. In that case, the node may have to
invoke higher-level error handling to cause the sequence to be retried.

For example, a detachable throttle will detect that it's reattaching, reserve an alias value, and then enter
permitted state with that value. Since the reservation happened while connected to the current CAN
segment, there is no possibility of a duplicate.

Example: Nodes A and B are in Permitted mode with different node IDs, but the same alias values.
Some gateway node C requests a list of all nodes on the CAN segment:

C: 0x10702ccc (AME frame)

A: 0x10701nnn 01 02 03 04 05 06 (AMD frame with Node ID 0x0102,0304,0506)

(For simplicity, B has not transmitted yet) B discovers that it's alias has been duplicated.

B: 0x10703nnn 55 AA 44 AA 33 AA (AMR frame with Node ID 0x55AA,44AA,33AA)

Node A also discovers that it's alias has been duplicated.

A: 0x10703nnn 01 02 03 04 05 06 (AMR frame with Node ID 0x0102,0304,0506)

B then goes back into operation by reserving a new alias value and transitioning to Permitted state:

B: 0x1755Ammm (1st CID)

Copyright 2011--2016. All rights reserved. See http://openlcb.org/Licensing.html for license terms. Page 8 of 18 - Feb 6, 2016

250

255

260

265

270

275

280

15

http://openlcb.org/Licensing.html

Adopted as NMRA Technical Note TN-9.7.2.1OpenLCB CAN Frame Transfer Technical Note

B: 0x16A44mmm (2nd CID)

B: 0x15AA3mmm (3rd CID)

B: 0x143AAmmm (4th CID)

Node A will also reserve a new alias.

A: 0x17010kkk (1st CID)

A: 0x16203kkk (2nd CID)

A: 0x15040kkk (3rd CID)

A: 0x14506kkk (4th CID)

After 200 ms both nodes finish their alias reservation and transition to Permitted state.

B: 0x10700mmm (RID)

B: 0x10701mmm 55 AA 44 AA 33 AA (AMD with B's node ID attached)

A: 0x10700kkk (RID)

A: 0x10701kkk 01 02 03 04 05 06 (AMD with A's node ID attached)

 2.6.2.6 Duplicate Node ID Handling

This should never happen, of course, but it's possible that two nodes will have the same Node ID
assigned. This will result in frame loss and operational difficulties. OpenLCB does not guarantee
prompt detection of this condition, at any level of the protocol stack, but it's extremely likely that it will
be detected. At the Frame Transfer level, two nodes on the same CAN segment sharing a common
Node ID will be detected when a node receives a Alias Map Definition frame that contains its own
Node ID.

The “in addition to any other actions” refers to e.g. acting on identical alias values, should that also be
the case.

Sending the PCER message is level jumping, in that such messages are defined at a much higher level
in the protocol stack. We include it here because it allows a much cleaner set of error handling
operations using the event producer/consumer techniques associated with OpenLCB. This decision can
be revisited.

After sending the (optional) PCER message, the node has to go offline so that it doesn't interact
anymore until the user resets it to restart operation. This is necessary to prevent the PCER itself
triggering additional messages back, resulting in a never-ending cycle.

Example: Nodes A and B are in Permitted mode with the same node IDs, but different aliases. Some
gateway node C requests a list of all nodes on the CAN segment:

C: 0x10702ccc (AME frame)

A: 0x10701aaa 01 02 03 04 05 06 (AMD frame with Node ID 0x010203040506)

Copyright 2011--2016. All rights reserved. See http://openlcb.org/Licensing.html for license terms. Page 9 of 18 - Feb 6, 2016

285

290

295

300

305

310

315

http://openlcb.org/Licensing.html

Adopted as NMRA Technical Note TN-9.7.2.1OpenLCB CAN Frame Transfer Technical Note

(For simplicity, B has not transmitted yet) B discovers that its node ID has been duplicated.

B: 0x195B4bbb 01 01 00 00 00 00 02 01 (Producer-Consumer Event Report (PCER) message with
event ID 0x0101,0000,0000,0201)

If the two nodes have also assigned the same alias value, that interaction is also invoked here.

 2.6.2.7 Reporting CAN Link Status

The CAN Standard defines the “Error Active”, “Error Inactive” and “bus off” states, along with
extensive fault-confinement rules. By using qualified CAN implementations, OpenLCB-CAN nodes
pick these behaviors up. The interactions in this section are then about reporting the results of the CAN
Standard operations. The “Error Information Report 0” through “Error Information Report 3” control
frames indicate specific transitions in the node's state. No OpenLCB-CAN node is required to react to
those reports. The reports only provide information.

Designers of monitoring equipment that attaches to the CAN link can use this information directly.
Designers of gateway nodes that connect CAN segments together or connect CAN segments to other
types of OpenLCB links may want to convert these control frames (which are not allowed to go off
their original CAN segment) to higher level messages. There are well-known EventIDs for this
purpose, but that use is beyond the scope of this Standard and Technical Note.

Since CAN nodes are required by the CAN standard to initialize in Bus Active state, no Error
Information N frame(s) can be emitted at startup. They cannot be emitted until there's an actual state
transition in the interface.

It's not possible for a node to emit a frame to indicate that it has entered the “Bus Off” state, so there's
no message corresponding to that.

 2.6.3 Node ID Alias Generation
We have a preferred implementation for node ID alias generation which is described in Section 6
“Preferred Alias Allocation Method” below.

The Standard is written to specify the minimum needed to ensure proper operation. This allows
developers to create other implementations if needed.

The term “of the same type” is meant to cover “from the same manufacturer”. The idea is that
manufacturer will likely number their boards sequentially, and it's possible that an OpenLCB
installation will have multiple boards from the same manufacturer. This rule just says that the low bits
of the sequential number appear in the alias, so that boards from a single manufacturer are not likely to
collide.

Two other criteria that were considered:

• The sequence of alias values generated by a node shall depend on the node's node ID in such a
way that the sequence differs from the sequence generated by every other node.

• Given sufficient iterations, the sequence of alias values generated by a node shall include every
valid alias value.

Although useful criteria, they were omitted as too hard to comprehensively test.

Copyright 2011--2016. All rights reserved. See http://openlcb.org/Licensing.html for license terms. Page 10 of 18 - Feb 6, 2016

320

325

330

335

340

345

350

http://openlcb.org/Licensing.html

Adopted as NMRA Technical Note TN-9.7.2.1OpenLCB CAN Frame Transfer Technical Note

What's really necessary, but hard to describe in standard language, is that two separate nodes need to
have different sequences of generated numbers. If node A will try 3, 4, 5, 6, … then it's important that
node B try some other sequence. If B also generates values in the sequence 3, 4, 5, 6, … then the two
nodes can get locked to each other trying the same value, both rejecting it, and then trying the same
new value.

Formally, if Ai is defined as a particular value in node A's sequence, Bi is defined as a particular value
in B's sequence, then “if Ai = Bi, then Ai+1 != Bi+1 most of the time” is the important condition.

It's not required that two sequential aliases be different. It's possible that the sequence generator will
come up with the same value occasionally, and the RID/CID mechanism is constructed to handle that.
The sequence on the CAN bus will be clearer, and in some cases the allocation process will be faster, if
nodes identify duplicate aliases in sequence, and just go on to the next one.

Copyright 2011--2016. All rights reserved. See http://openlcb.org/Licensing.html for license terms. Page 11 of 18 - Feb 6, 2016

355

360

http://openlcb.org/Licensing.html

Adopted as NMRA Technical Note TN-9.7.2.1OpenLCB CAN Frame Transfer Technical Note

Note that in the diagram above, the 'Fails' are due to the node receiving a message which uses its
tentative Alias, and it therefore needs to back off and try a new tentative Alias.

 3 Gateways and segment management
Multiple CAN electrical regions can be connected into a single CAN segment via repeaters that allow
the entire segment to share arbitration. The OpenLCB-CAN frame-level protocol was designed to
work with these: It doesn't use RTR frames, and negotiates aliases over top of the CAN arbitration.

Bridges, which work by passing frames between separate segments, are also supported. In normal
operation, OpenLCB-CAN frames can be transported through those bridges unchanged. While the
bridge is active, the alias negotiation system will work properly. If a bridge is inactive, e.g. the two
segments are separate, while nodes are coming up and allocating their aliases, it's possible that
duplicate aliases will be allocated. Bringing up the CAN bridge hardware before bringing up the nodes
prevents duplicate assignment. If duplicates are assigned, e.g. due to bringing up a bridge between
active CAN segments, the nodes will discover the duplicates on their first transmission, and will rectify
the situation using the procedure defined in the “Node ID Alias Collision Handling” section.

Higher-capability bridges, and gateways to non-CAN OpenLCB networks, will want to handle the
assignment of local aliases directly. This prevents alias collisions between separate CAN segments,
and allows very large OpenLCB networks, but requires more work from the gateway. It will allocate a
pool of aliases using the conventional technique, and then assign them to off-segment nodes as they
need to communicate on the segment. Many algorithms are possible for that assignment.

If/when a full Node ID is needed, it can be obtained by sending an "Alias Mapping Enquiry" frame
with an appropriate Destination Node ID in local alias form. The reply will eventually come back with
the Source ID in local alias form and carrying the full Node ID in the frame body.

 4 Throughput and Temporarily Deaf Nodes
29-bit extended header and 8-byte payload results in a total transmission taking about 135 bit times,
varying slightly with bit-stuffing.

125Kbps with max-length extended header frames is about 900 frames/second. CAN is very good at
running at 100% utilization, so long as nodes can keep up and a proper set of priorities is in place. The
CAN network itself does not require any inter-frame spacing, limitations on bandwidth usage, etc.; the
segment can be allowed to run at 100%.

OpenLCB requires that CAN-attached nodes be able to handle the full frame rate on the CAN bus.
There is no guarantee that frames for a given node will arrive with non-zero time between then.

Some nodes are not always able to process frames. For example, the node may cease processing for a
short time while writing non-volatile memory. Higher-level protocols, e.g. configuration write
datagrams, have mechanisms built in to prevent overrun while writing configuration memory, but there
could be multiple activities going on in parallel that will result in frames arriving while the node is not
processing.

Copyright 2011--2016. All rights reserved. See http://openlcb.org/Licensing.html for license terms. Page 12 of 18 - Feb 6, 2016

365

370

375

380

385

390

395

400

http://openlcb.org/Licensing.html

Adopted as NMRA Technical Note TN-9.7.2.1OpenLCB CAN Frame Transfer Technical Note

Short outages can be covered by CAN hardware buffering, so long as the node will eventually catch up
even at full arrival rate. Outages long enough that frames are lost due to e.g. buffer overflow require a
node to broadcast that it's back up if the hardware detected frames lost. This is because there could
have been frames of some form that modified the OpenLCB node state, which are now lost (e.g. drop
alias, CID/RID in absence, or even higher level events)

The real limitation is whether the nodes themselves can handle the full rate of frame arrival. There is
(currently) no mechanism in OpenLCB to throttle the rate of frames arriving at a node, nor is it easy to
create one in a CAN network. The stream and datagram protocol have been designed to allow a node to
efficiently use a very limited amount of buffer memory, but don't provide mechanisms to limit the
arrival of frames in general. Nodes must handle full rate frames, specifically including frames not
addressed to them. For long term reliability, a node must be able to completely process an entire CAN
frame in the time it takes to receive the next one, which may be as little as 64 bit times, or about 500
microseconds for a header only frame.

Eventually OpenLCB may have to discuss use of Overload Frames to throttle for e.g. NVRAM writing,
but various CAN hardware implementations may also be doing this already. This mechanism provides
only a little more time, due to restrictions in the CAN specification that have become limitations on the
silicon implementations.

 5 On the choice of a 12-bit alias length
The size of the 12-bit NodeID alias field was selected by balancing two constraints:

• Smaller (fewer bits) allows more payload and/or simpler coding of other parts of messages.

• Larger allows more unique nodes to be accessed.

 5.1 Issues

 5.1.1 Addressing
The alias size limits the number of unique nodes that can take part in communications on the CAN
segment. Because Node ID aliases are assigned independently on each CAN segment, the only issue is
how many different nodes are involved, not which ones they are or what pattern(s) are available in their
address numbers.

For electrical/timing reasons, a segment itself can only support a maximum of about 100 nodes6, but
communication also involves nodes off the segment. For example, chaining N CAN segments via
bridges will generally make up to 100*N nodes available. We have a use case of chaining small
numbers of CAN segments together, implying the need to address 500 or 1000 nodes.

As another example, a very large network might connect many CAN segments via TCP/IP or other
networked connections. Each CAN-attached node might need to communicate with a larger number of
others spread across that network.

Finally, one can imagine connecting a few CAN segments in a star pattern to a central OpenLCB-CAN
“backbone”, which must route the full cross-segment traffic.

6The OpenLCB-CAN Physical Layer Standard says in its Intended Use section uses 50 nodes as an expected size. This is
merely an informative statement of expectations, however, and some layouts will no doubt exceed that. We use the larger
number 100 here to avoid placing any stronger limitation on what can be achieved electrically.

Copyright 2011--2016. All rights reserved. See http://openlcb.org/Licensing.html for license terms. Page 13 of 18 - Feb 6, 2016

405

410

415

420

425

430

435

20

http://openlcb.org/Licensing.html

Adopted as NMRA Technical Note TN-9.7.2.1OpenLCB CAN Frame Transfer Technical Note

In some cases, we want two aliases (source and destination), plus a few more bits, in the 29 bits total
available in the header. Using 12-bits for each address leaves 29-(2*12) = 5 bits for these purposes,
which seemed about right, and allows a maximum of 2^12, or 4096 nodes.

 5.1.2 Collisions during Allocation
The alias allocation process resolves collisions (attempt to use an already allocated Node ID alias), but
that takes time. Minimizing the number of collisions is good. If the address space is just the size of the
number of things you want to address, the collisions get hard /slow to resolve across multiple nodes.
This points to having a factor of 2, at least, between the number of nodes to be addressed and the size
of the address space.

 5.1.3 Size
Streaming provides the most stringent test of alias sizes. We'd like to have all 8 bytes of CAN frame
payload available for transporting stream data, which requires putting both source and destination
addresses, plus whatever control information is needed, into the header.

To get the full payload (8 bytes) for streaming requires getting the rest of the protocol control,
including two aliases for source and destination, in the 29 bit header. Allowing 1 bit for
priority/extension, 1 for protocol control, 3 for MTI and stream control (all very bare minimum) leads
to a 12-bit node ID alias length.

 6 Preferred Alias Allocation Method
This section documents the preferred algorithm for generating unique Node ID aliases.

CAN transmissions are not atomic operations; you can receive a frame between the time you tell the
hardware to send a frame and the time that frame is actually sent. It's therefore possible for both nodes
contending for the same alias value to back off and try again. Using the pseudo-random number
generator as a sequence number makes it likely that the next attempt will be made using different alias
values in the two nodes. The use of a sequence generator also makes the arbitration process faster in the
case of sequential Node ID values. People like to use small and sequential numbers for things, and the
sequence generator maps those to very different values that are less likely to collide during arbitration.

 6.1 Preferred alias generation algorithm

The 12 bit alias has to be derived from a 48-bit sequence number in a way that keeps as much entropy
(distinctiveness; randomness) as possible.

The entropy starts in the node ID values, which cover a 48-bit space (albeit non-uniformly). This
provides an initial 48-bit value that can be mapped to a 12-bit value.

To create a sequence of values, you want a computationally cheap way of sequencing through all those
possible 48-bit values. (Running through the 48-bit values and compressing each to a 12-bit alias value
is less likely to get multiple nodes attempting the same sequence than just working through a 12-bit
sequence) A suitable pseudo-random number generator does exactly this: it runs through full 48-bit
sequence, with each node starting at separate point in the sequence, so the 48 bit values are unique.

A computationally convenient way to create a 12-bit value, while preserving as much of the
randomness as possible, is to break the 48-bit value into four 12-bit values, align these, and exclusive-
or them. Each bit-change in the original 48-bit number then becomes a change in the final 12-bit value.

Copyright 2011--2016. All rights reserved. See http://openlcb.org/Licensing.html for license terms. Page 14 of 18 - Feb 6, 2016

440

445

450

455

460

465

470

475

http://openlcb.org/Licensing.html

Adopted as NMRA Technical Note TN-9.7.2.1OpenLCB CAN Frame Transfer Technical Note

Sequentially numbered nodes will have initial seeds that differ only in the low bits of the PRNG output.
For shift-register PRNGs, this can present a problem, as all bytes of the result are shifting together with
just one new bit shifting in at the top. (Traditionally, shift-register PRNGs shift toward the LSB) Only
one bit changes. Combining bytes (or even 12-bit chunks) via XOR or add operations results in
reduced entropy.

The OpenLCB proposed PRNG (next section) uses add operations with a constant term to avoid this
problem, so treating the 48-bit PRNG output as four 12-but values, which are then XORed, works well.

 6.1.1 Preferred PRNG
The proposed 48-bit PRNG is from “A 48-Bit Pseudo-Random Number Generator”, Heidi G. Kuehn,
Communications of the ACM, Volume 4, Issue 8 (August 1961), pages 350-352.

xi+1 = (29+1) xi + c

where c = 29,741,096,258,473 or 0x1B0CA37A4BA9.The paper actually describes a PRNG that uses
signed arithmetic, but for our purposes the 48th “sign” bit isn't important. This is a byte+bit shift and
add, so it's quick to calculate.

Note that, unlike some other PNRGs, this one can generate a zero result, and can accept a zero seed.

It is initialized with the node ID as a 48-bit key, with the most significant byte of the node ID as the
most-significant byte of the PRNG value.

 6.1.2 Preferred PRNG to node ID alias mapping
The 12-bit node ID alias is made from the 48-bit PRNG value by splitting the PRGN value into four
12-bit values and XORing them together. This preserves the information content of every bit in the
final result.

 6.1.3 Example C implementation7

The PRNG state is stored in two 32-bit quantities:

 uint32_t lfsr1, lfsr2; // sequence value: lfsr1 is upper 24 bits, lfsr2 lower

The 6-byte unique Node ID is stored in the nid[0:5] array.

To load the PRNG from the Node ID:

 lfsr1 = (nid[0] << 16) | (nid[1] << 8) | nid[2];
 lfsr2 = (nid[3] << 16) | (nid[4] << 8) | nid[5];

To step the PRNG:

 // First, form 2^9*val
 uint32_t temp1 = ((lfsr1<<9) | ((lfsr2>>15)&0x1FF)) & 0xFFFFFF;
 uint32_t temp2 = (lfsr2<<9) & 0xFFFFFF;

 // add
 lfsr2 = lfsr2 + temp2 + 0x7A4BA9L;
 lfsr1 = lfsr1 + temp1 + 0x1B0CA3L;

 // carry

7The code in this section is from the OpenLCB C sample implementation available at
http://www.openlcb.org/trunk/prototypes/C/libraries/OlcbCommonCAN/ The specific code is available at
http://www.openlcb.org/trunk/prototypes/C/libraries/OlcbCommonCAN/LinkControl.cpp

Copyright 2011--2016. All rights reserved. See http://openlcb.org/Licensing.html for license terms. Page 15 of 18 - Feb 6, 2016

480

485

490

495

500

505

510

25

http://openlcb.org/Licensing.html
http://www.openlcb.org/trunk/prototypes/C/libraries/OlcbCommonCAN/LinkControl.cpp
http://www.openlcb.org/trunk/prototypes/C/libraries/OlcbCommonCAN/

Adopted as NMRA Technical Note TN-9.7.2.1OpenLCB CAN Frame Transfer Technical Note

 lfsr1 = (lfsr1 & 0xFFFFFF) + ((lfsr2&0xFF000000) >> 24);
 lfsr2 = lfsr2 & 0xFFFFFF;

Form a 12-bit alias from the PRNG state:

uint16_t LinkControl::getAlias() {
 return (lfsr1 ^ lfsr2 ^ (lfsr1>>12) ^ (lfsr2>>12))&0xFFF;
}

 7 Additional References
The OpenLCB-CAN Physical Layer TN contains useful references on the characteristics of CAN.

B. Gaujal and N. Navet, “Fault confinement mechanisms on CAN: analysis and improvements”, IEEE
Transactions on Vehicular Technology, pp.1103-1113, 54(3), May 2005 (An interesting analysis of how
CAN nodes react to error rates on the CAN bus by e.g. taking themselves offline, etc.)

“A 48-Bit Pseudo-Random Number Generator”, Heidi G. Kuehn, Communications of the ACM,
Volume 4, Issue 8 (August 1961), pages 350-352.

Copyright 2011--2016. All rights reserved. See http://openlcb.org/Licensing.html for license terms. Page 16 of 18 - Feb 6, 2016

515

520

525

http://openlcb.org/Licensing.html

Adopted as NMRA Technical Note TN-9.7.2.1OpenLCB CAN Frame Transfer Technical Note

Appendix A: Calculation Examples

Starting 48-bit seed Alias Next 48-bit seed

00 00 00 00 00 00 0 1B 0C A3 7A 4B A9

1B 0C A3 7A 4B A9 11E 4F 60 3B 8B E9 52

4F 60 3B 8B E9 52 521 2A E3 F5 D8 D8 FB

2A E3 F5 D8 D8 FB 42D 0D DC 4B 05 1A A4

0D DC 4B 05 1A A4 663 E1 7E F8 B4 AE 4D
Table: Sequence of aliases and seeds starting from zero

Starting 48-bit seed Alias Next 48-bit seed Next Alias

02 01 21 00 00 12 113 1F 4F C4 7A 6F BB 62D

02 01 12 00 00 21 113 1F 31 B5 7A 8D CA A24

02 01 11 00 00 22 113 1F 2F B4 7A 8F CB 625

02 01 22 00 00 11 113 1F 51 C5 7A 6D BA A2C
Table: Four seeds (of 236) that give the same alias, and their different subsequent seeds and aliases

Copyright 2011--2016. All rights reserved. See http://openlcb.org/Licensing.html for license terms. Page 17 of 18 - Feb 6, 2016

530

30

http://openlcb.org/Licensing.html

Adopted as NMRA Technical Note TN-9.7.2.1OpenLCB CAN Frame Transfer Technical Note

Table of Contents
 1 Introduction.. 1

 1.1 CAN Specialization for OpenLCB...1
 1.2 CAN collisions in loaded networks..2

 2 Annotations to the Standard... 2
 2.1 Introduction.. 2
 2.2 Intended Use...3
 2.3 References and Context..3
 2.4 Frame Format... 3
 2.5 States.. 4
 2.6 CAN-specific Control Frames and Interactions... 4

 2.6.1 Control Frame Format.. 4
 2.6.2 Interactions... 5

 2.6.2.1 Reserving a Node ID Alias... 5
 2.6.2.2 Transition to Permitted State...6
 2.6.2.3 Node ID Alias validation.. 6
 2.6.2.4 Transition to Inhibited State..7
 2.6.2.5 Node ID Alias Collision Handling..8
 2.6.2.6 Duplicate Node ID Handling.. 9
 2.6.2.7 Reporting CAN Link Status..10

 2.6.3 Node ID Alias Generation.. 10
 3 Gateways and segment management... 12
 4 Throughput and Temporarily Deaf Nodes... 12
 5 On the choice of a 12-bit alias length...13

 5.1 Issues.. 13
 5.1.1 Addressing.. 13
 5.1.2 Collisions during Allocation... 14
 5.1.3 Size... 14

 6 Preferred Alias Allocation Method.. 14
 6.1 Preferred alias generation algorithm.. 14

 6.1.1 Preferred PRNG..15
 6.1.2 Preferred PRNG to node ID alias mapping.. 15
 6.1.3 Example C implementation7.. 15

 7 Additional References.. 16

Copyright 2011--2016. All rights reserved. See http://openlcb.org/Licensing.html for license terms. Page 18 of 18 - Feb 6, 2016

http://openlcb.org/Licensing.html

	Adopted as a NMRA Technical Note
	Version History
	1 Introduction
	1.1 CAN Specialization for OpenLCB
	1.2 CAN collisions in loaded networks

	2 Annotations to the Standard
	2.1 Introduction
	2.2 Intended Use
	2.3 References and Context
	2.4 Frame Format
	2.5 States
	2.6 CAN-specific Control Frames and Interactions
	2.6.1 Control Frame Format
	2.6.2 Interactions
	2.6.2.1 Reserving a Node ID Alias
	2.6.2.2 Transition to Permitted State
	2.6.2.3 Node ID Alias validation
	2.6.2.4 Transition to Inhibited State
	2.6.2.5 Node ID Alias Collision Handling
	2.6.2.6 Duplicate Node ID Handling
	2.6.2.7 Reporting CAN Link Status

	2.6.3 Node ID Alias Generation

	3 Gateways and segment management
	4 Throughput and Temporarily Deaf Nodes
	5 On the choice of a 12-bit alias length
	5.1 Issues
	5.1.1 Addressing
	5.1.2 Collisions during Allocation
	5.1.3 Size

	6 Preferred Alias Allocation Method
	6.1 Preferred alias generation algorithm
	6.1.1 Preferred PRNG
	6.1.2 Preferred PRNG to node ID alias mapping
	6.1.3 Example C implementation

	7 Additional References

