
D
ra

ft
fo

r
C

om
m

en
t

NMRA Technical Note

Layout Command Control® (LCC)

Firmware Upgrade

Feb 8, 2016 TN-9.7.4.3

 Adopted as a NMRA Technical Note
The OpenLCB Standard document appended to this cover sheet has been formally adopted as a
NMRA Standard by the NMRA Board of Directors on the date shown in the Adopted column in
the Version History table below.

 Version History
Date Adopted Summary of Changes

Feb 8, 2016 Initial version submitted for public comment

5

Submitted for public comment as NMRA Technical Note TN-9.7.4.4

OpenLCB Technical Note

Firmware Upgrade

Feb 8, 2016 Adopted

Introduction
OpenLCB hardware contains a significant amount of complexity, both in terms of the protocol
stack involved, as well as the node-carried descriptors which can be considered a user interface.
The necessary code and data is stored in non-volatile memory of the node, and it is highly
desirable to have this non-volatile memory field-updatable. There may be many reasons for a
new released version of firmware: fixing issues discovered after shipping the node, adding new
features to the node, keeping up to date with the evolving standards, or simply to change the
language of the user interface descriptors.

There are many desirables for a firmware update mechanism that is expected to be operated by
the end-user:

• The update should be safe and reversible. The end-user must not be able to irrecoverably
damage (aka brick) the node with the update process. Failures during the download
process are possible but must be recoverable by re-trying the update process.

• The update should be reasonably fast. With the largest OpenLCB deployments expected
to range up to hundreds of nodes, the update process per node should not exceed a few
minutes.

• The update process should be standardized so that the ability to update nodes can become
a feature of all (or most) commonly available Configuration Tool softwares. This allows
the user to perform the firmware upgrade tasks using the existing tools that they are
familiar with. A worst-case scenario would be if every manufacturer has to implement
and release separate tools for updating their nodes (for all possible host operating
systems), and the user having to acquire and learn using all these new tools; and every
manufacturer having to go to the effort to implement, deploy and support them across a
wide variety of environments.

• The node should be able to check and validate the firmware being downloaded. The exact
detail and strength of this validation shall be left at the discretion of the manufacturer and
cannot be dictated by the standard. Most manufacturers will want to check at least the
compatibility of the new firmware with the particular node hardware, but some may want
to have significantly stronger form of security, including using strong cryptography to
avoid reverse engineering or modifying the firmware being downloaded.

• The firmware update process should be user-friendly and should happen through the
OpenLCB bus; preferably without the need to physically access the node. Since the node
may be mounted in a hard-to-access location under the layout, but the network browsing
tools have sufficient information to locate and identify the node using standard OpenLCB

Copyright 2015-2016. All rights reserved. See http://openlcb.org/Licensing.html for license terms. Page 1 of 11 - Feb 8, 2016

5

10

15

20

25

30

http://openlcb.org/Licensing.html

Submitted for public comment as NMRA Technical Note TN-9.7.4.4OpenLCB Firmware Upgrade Technical Note

protocols, the end-user has full ability to target and select the specific node that they want to
update.

The most important requirement is that of safety, i.e., the user should not be able to brick the node
while attempting an update. This is very difficult to achieve, because the update process will inherently
modify the node's program. A protocol error (aka implementation bug or incompatibility), or everyday
events such as loss of power or network connectivity during the update process will likely leave the
Target Node with a corrupted firmware, a situation from which it is notoriously hard to recover.

The only reasonable way to recover from a corrupted firmware is to employ a double-firmware
approach, where the node is shipped with two firmwares, one that is updatable for regular operation
(Primary firmware), and another whose sole purpose is to update the Main firmware (aka Bootloader
firmware). Of the two firmwares the node would typically start up with control being held by the
Bootloader firmware, which checks that the Main firmware is correct, matches the hardware, and not
corrupted before yielding control to it. If any of these checks fail, the Bootloader firmware takes
control and starts up the node, participating in the bus activity only as far as necessary to receive the
correct firmware data file.

The obvious drawback of the double firmware approach is the size and cost associated with the
secondary firmware. A minimalistic Bootloader firmware can however be implemented in 5-8 kbytes of
program space, which will not add a prohibitive cost to the node hardware on top of the regular
firmware, which is expected to be 32-128 kbytes in size.

Despite the above recommendation, the actual firmware upgrade protocol described in the standard is
agnostic to the actual implementation, therefore it is the manufacturer's choice whether they implement
the firmware upgrade process with double firmware, or some other method.

 1.1 Served Use Cases

The user checks the manufacturer's web-site and finds that an updated firmware is available. The user
downloads a binary file from the manufacturer containing the new version. Then the user launches the
Configuration Tool (CT), selects the particular node in the network browser that she wants to update,
and selects the Firmware Update option in the user interface of the CT. They point to the recently
downloaded file. The CT starts the download process and shows a progress bar as the transfer is
happening. After the download is complete, the CT automatically reboots the node, which starts up
with the new firmware. The user can now go to the configuration panel of the node and start using the
new features that are in the new version of the firmware.

If the manufacturer decides, a more powerful node of the given manufacturer (such as a Command
Station) may contain firmware versions of other nodes of that manufacturer. If desired, the powerful
node could enumerate all nodes on the network, and automatically update the ones that have an
outdated firmware. It is up to the manufacturer's discretion on whether or not to implement such a
feature and how to manage the customer expectations of seamless operation, for example by
automatically migrating the configuration of the upgraded node, or asking for user confirmation before
the upgrade process.

 1.2 Unserved Use Cases

This protocol does not solve the problem of discovering what hardware node requires which firmware,
and does not help the user to locate and acquire the new firmware data file for any given node. There is

Copyright 2015-2016. All rights reserved. See http://openlcb.org/Licensing.html for license terms. Page 2 of 11 - Feb 8, 2016

35

40

45

50

55

60

65

70

75

http://openlcb.org/Licensing.html

Submitted for public comment as NMRA Technical Note TN-9.7.4.4OpenLCB Firmware Upgrade Technical Note

no check for validity or correctness of the firmware data file in the protocol or the CT – it is left to the
node developer to perform these checks.

There is no inherent protocol support for bulk updating many nodes at once. Even though the data
transfer could be observed by many nodes participating on the bus (especially if a shared physical
media bus, such as CAN is used), the complexity involved in multicast transfers heavily outweigh the
benefits of updating many nodes at once. The firmware update process is defined so that it is possible
to perform without user interaction, directly through the bus, so it is easily scriptable. If a high demand
arises for bulk updating many nodes, then common CT software packages may implement a feature for
updating many nodes sequentially (or in parallel) without the user being present at the terminal.

The Firmware Upgrade standard also does not define what happens with the configuration data during
and after the update. The CT does not have a responsibility to translate or update the configuration
memory contents in case of an incompatibility between the old and the new firmware. The firmware
(either the Primary or the Bootloader) is expected to perform reinitialization or migration of the
configuration memory contents as required. The reason for this decision is that such a translation would
be very difficult to specify and could easily lead to feature bloat or a Turing-complete language
interpreter being required to be present in all CT software packages, which we deem an unnecessary
complexity.

 2 Annotations to the Standard
 2.1 Introduction

Note that this section of the Standard is informative, not normative.

 2.2 Intended Use

Note that this section of the Standard is informative, not normative.

 2.3 References and Context

There is no additional commentary to this section.

 2.4 Message Formats

There is no additional commentary to this section.

 2.5 States

There is no additional commentary to this section.

 2.6 Interactions

 2.6.1 Definitions
The Configuration Tool is typically a computer software that is connected to the OpenLCB bus. The
user can download the new firmware data file to this computer, and use the user interface of the
Configuration Tool to browse the nodes available on the bus, select the node to upgrade and initiate the
firmware update process.

There are interesting alternative approaches to the role of the Configuration Tool.

Copyright 2015-2016. All rights reserved. See http://openlcb.org/Licensing.html for license terms. Page 3 of 11 - Feb 8, 2016

80

85

90

95

100

105

110

http://openlcb.org/Licensing.html

Submitted for public comment as NMRA Technical Note TN-9.7.4.4OpenLCB Firmware Upgrade Technical Note

• For example a smart throttle may receive the firmware data file using a USB memory stick
plugged into a USB port, and use the user interface of the throttle to select the target node to
update and perform the firmware update process. This way customers who do not have a
computer connected to their OpenLCB bus can still perform firmware upgrade, provided they
have an appropriate smart throttle. A smartphone application when acting as a smart throttle
could even acquire the new firmware data file from the Internet.

• Another example would be an internet-connected service operated by the hardware
manufacturer. The customer would connect the OpenLCB bus using a TCP/IP-based OpenLCB
segment to the manufacturer's server. The manufacturer's server would then enumerate the
nodes on the OpenLCB bus, select those that are in need of a firmware update, and
automatically perform the firmware update process with the latest firmware.

• Such an automatic firmware update mechanism may also be implemented in a smart throttle (or
any other node with sufficient storage) provided by a given manufacturer, if the manufacturer
deploys it with the necessary node firmware files.

 2.6.2 State transitions
The two states of the node (Firmware Upgrade and Operational) operate with a dramatically different
feature set, and most information that may be acquired or cached from one state (such as a Protocol
Support Reply) will not apply to the other state. Therefore the node switching between the two states
must signal the other participants of the bus that all such cached information shall be discarded. This
can be done by appearing to reboot the node, which is visible on the bus by a Node Initialization
Complete message. The requirement of entering Uninitialized state to transition between Firmware
Upgrade and Operational states forces the node to emit a Node Initialization Complete message.

A node that is in Firmware Upgrade state will appear as in-operational to the customer. Therefore it is
important that a node does not accidentally enter this state. In all normal conditions the node shall be in
Operating state. Normal conditions include power-cycling the node, and thus the node must reach
Operating state upon powering up.

The exceptions are granted for two purposes:

• If the node has its production firmware missing or corrupted, then reaching an Operating state is
likely impossible. The node may detect this upon power up and start in Firmware Upgrade state.
This allows the user to use a Configuration Tool to download an appropriate firmware and
restore the node to full working operation. An important case when firmware corruption may
occur is if the firmware download process was interrupted due to power loss or hardware error.
Another case when this may happen is if the user downloads an incompatible firmware whose
incompatibility was not detected during the download operation. A node may also detect cases
of irreparable software errors (for example the production firmware crashing every time upon
startup) and power up in Firmware Upgrade state, expecting the user to contact the
manufacturer and supply a working firmware using the firmware update method.

• The customer should be able to physically force booting the hardware into Firmware Upgrade
state. In case the production firmware is misbehaving to the extent that entering Firmware
Upgrade state using a Configuration Tool is impossible (e.g. due to a bug in the operating
software), this option gives the user a physical recovery mechanism. While not really
convenient, as physical access to the node is required, it still allows the user to recover

Copyright 2015-2016. All rights reserved. See http://openlcb.org/Licensing.html for license terms. Page 4 of 11 - Feb 8, 2016

115

120

125

130

135

140

145

150

5

http://openlcb.org/Licensing.html

Submitted for public comment as NMRA Technical Note TN-9.7.4.4OpenLCB Firmware Upgrade Technical Note

“bricked” hardware nodes, so long as the firmware needed for Firmware Upgrade state is intact.
It is not required by this standard for the node to come with a hardware switch, if the
manufacturer decides that this option is not necessary for their hardware.

The remaining state transitions describe how a Configuration Tool may request a node to change to a
specific state. Note that the user may also perform these transitions without a CT: to transition from
Firmware Upgrade state to Operating state it is enough to power cycle the node, and to transition into
Firmware Upgrade state, the user may use the hardware switch while power cycling the node.

The CT may detect whether a given node is in Firmware Upgrade state or in Operating state by
examining the Protocol Support Reply. Nevertheless, for the simplicity of the CT implementation the
state transition is defined in a way that it is legal to request transition to Firmware Upgrade state even if
the node is already in Firmware Upgrade state, and the CT will receive the same reply to it.

 2.6.3 Data Transfer
The data transfer is defined as sending a file as-is from the manufacturer to the node. The file must be
sent binary-accurately. This allows maximum freedom to the manufacturer in defining the format and
contents of the file, while also keeps the standard and the CT implementation complexity at a
minimum. More discussion about the file format is at Section 3.1. The transfer is also required to start
at offset zero, because the offsets are not required to match any physical hardware address in the Target
Node – most manufacturers would want to prefix the binary data with at least a header to check if the
firmware is intended for the given hardware it is being downloaded to. Making offset translation is not
a significant complexity in the bootloader implementation.

Such a header may cause the Target Node to reject the payload being transmitted, and both the Stream
and the Datagram / Memory Configuration protocol allows this. The target node has to return a Stream
Data Abort message to the CT, supplying an error code for the failure, or in case of the Datagram-based
transfer a Datagram Rejected message or Memory Configuration Write Reply datagram with the error
code. The Standard lists a few error codes in Section 7 (Allocations) that may be used to denote
common problems. Of course all other standardized error codes may be used, including the general
Permanent Error (0x1000) or Temporary Error (0x2000), albeit these may not be very helpful for the
end-user.

If the transfer was aborted, it is possible that the Target Node has an incomplete firmware. In such a
case the node may be in-operational, but it shall not be destroyed permanently, even in case of a power
loss. Upon power-up the bootloader firmware shall detect that the main firmware is corrupted, and start
up in the Firmware Upgrade state.

 3 Background
 3.1 Payload content format

The Firmware Upgrade Standard purposefully does not specify anything about the format and contents
of the firmware data file. It is fully up to the manufacturer how the data contents are defined. The only
requirement from the protocol is that the bytes be transferred unmodified to the node in Firmware
Upgrade state.

Simple implementations may just supply a stream of bytes to be written to the non-volatile memory of
the node. Other implementations may add a header describing the hardware name and version with

Copyright 2015-2016. All rights reserved. See http://openlcb.org/Licensing.html for license terms. Page 5 of 11 - Feb 8, 2016

155

160

165

170

175

180

185

190

http://openlcb.org/Licensing.html

Submitted for public comment as NMRA Technical Note TN-9.7.4.4OpenLCB Firmware Upgrade Technical Note

which the firmware file is compatible, allowing for the Bootloader firmware to cancel the upgrade
process in case it detects an incompatibility. More elaborate implementations may create internal
headers and packet format inside the binary stream with an arbitrary encoding of the choice of the
manufacturer to convey a diverse set of information, such as checksums, offsets at which the data is to
be written, or signatures1. It is also possible to encode a configuration memory update script inside the
firmware upgrade file, if the manufacturer so chooses, and supplies the respective Bootloader with the
necessary interpreter.

We describe two interesting options, one for its simplicity and another for its security properties.

• For the simple option the data bytes as they arrive are written directly to flash. The program
space is assumed to be one consecutive region, and the compiled and linked binary of the new
firmware is written to flash at this offset, which is hard-coded in the Bootloader firmware.
There are two notable positions in the firmware file, which contain special data instead of
instructions. The first notable position, present within the first writable block of the firmware
file, contains a magic code that identifies the hardware type and version. If there is a mismatch,
the firmware update operation is aborted before the existing firmware is corrupted by the update
process. The second notable position contains the size and checksum of the entire firmware.

When the node is powered on, the Bootloader firmware starts up, checksums the Main firmware
and compares with the value given at the second notable position. Should there be a checksum
mismatch, the Bootloader firmware initializes the OpenLCB bus, emits the well-known event
with ID “Firmware corrupted”, and awaits a CT to deliver the correct firmware for the node. If
the checksum matches, the Bootloader firmware jumps to the entry point of the Main firmware,
which will initialize the OpenLCB bus, and the node operations commence as expected.

• In the secure option the data bytes are encompassed in a lightweight framing format. Each
frame is of the size that can be held in RAM by the node in Firmware Upgrade state. The
frames are suffixed with a cryptographically secure hash that the node in Firmware Upgrade
state verifies before writing the specific block of data to non-volatile storage. It is also possible
to use encryption on the frames, with the Bootloader firmware containing the necessary
decryption keys.

Using this method the manufacturer can ensure that the firmware that gets loaded into their
node is authentic and is originating from themselves. This might be important if for example
different boards with different pricing are based on the same hardware but a different firmware
to achieve a richer feature set.

 3.2 Alternatives considered

 3.2.1 Using Datagram-based Memory Configuration writes
A valid standards-compliant alternative is to perform the data transfer using datagram-based writes of
the Memory Configuration protocol.

Datagrams are meant for short data transfers. Based on the global guidelines, if the data to be
transferred is more than about 1 KB, streams should be used. Streams perform better buffer
1For example it is valid to have a HEX file be the firmware upgrade data file; the interpretation of the HEX file contents
would be up to the receiving node (i.e. the Bootloader firmware). This is not particularly efficient use of bus bandwidth
(since we are transferring 4 bits per byte), but certainly a valid implementation of the standard.

Copyright 2015-2016. All rights reserved. See http://openlcb.org/Licensing.html for license terms. Page 6 of 11 - Feb 8, 2016

195

200

205

210

215

220

225

230

10

http://openlcb.org/Licensing.html

Submitted for public comment as NMRA Technical Note TN-9.7.4.4OpenLCB Firmware Upgrade Technical Note

management, and require significantly fewer round-trips than datagrams. For each 64 bytes written by
the Memory Configuration protocol Write command, the following messages need to be transferred
over CAN:

• > Write request, 8 bytes header
• > Write request, 64 bytes data
• < Datagram received OK, reply pending
• < Write response OK
• > Datagram received OK

This sequence requires not only significantly more bytes on the bus, but also two changes of data
transfer direction, which involves significant latency by needing to traverse all gateways' and routers'
message queues. This latency will dramatically reduce the maximum achievable transfer rate, since it is
incurred for every single 64-byte block of data.

On the other hand, streams will allow typically several kilobytes of data transferred before a change of
direction for an acknowledgement is required. As an example, a practical implementation traversing a
CAN-USB and a TCP-TCP gateway was able to achieve 1.7 kbyte/sec transfer rate with datagrams, and
8 kbyte/sec transfer rate with streams.

An undoubted benefit to the datagram-based transfer is that the Datagram Transport is already an
adopted standard, whereas Stream Transport is still in draft.

 3.2.2 Using a directly initiated stream
It would be possible to eliminate the Memory Configuration protocol from the bootloading process,
and allow the Data Transfer to start directly with the Stream Initiate command from the CT to the
Target Node.

The stream content could be identified by a specific stream content UID that is reserved for the
Firmware Upgrade protocol.

The benefit of this implementation is that less code would be needed in the bootloader firmware. This
is questionable though, since the Reboot command would still have to be implemented in the Target
Node even in Firmware Upgrade state in order to facilitate the state transition back to Operating state.
Defining a custom message for reboot request would create unwanted parallelism in the OpenLCB
protocol stack.

 3.2.3 Using custom protocol instead of Memory Configuration
It would be possible to define custom messages for carrying bootloader data.

The benefit would be a potentially simpler implementation of the protocol, thus the Bootloader code
being smaller.

However, this messaging protocol would face the exact same requirements and challenges as the
Stream protocol, therefore the most likely best solution would be exactly the same. Also, addressed
messages on the CAN bus have a payload efficiency of 6 bytes/frame, while streams have 7
bytes/frame. A custom datagram-based protocol would achieve higher bus efficiency, but at the expense
of fully implementing the datagram segmentation in the bootloader, which costs more code space than
stream reception.

Copyright 2015-2016. All rights reserved. See http://openlcb.org/Licensing.html for license terms. Page 7 of 11 - Feb 8, 2016

235

240

245

250

255

260

265

270

http://openlcb.org/Licensing.html

Submitted for public comment as NMRA Technical Note TN-9.7.4.4OpenLCB Firmware Upgrade Technical Note

Defining a custom protocol would also increase the mental complexity of the Firmware Upgrade
standard, the engineering cost of implementation, especially that standard solutions of existing stacks
(like that of the Stream protocol of the Memory Configuration) could not be used.

 3.2.4 Using non-OpenLCB messages
The physical bus can carry other messages than OpenLCB. These messages, however, cannot be routed
through OpenLCB gateways, thus there is no standard method of ensuring that the Configuration Tool,
which may be on a different bus segment (including even a different part of the world, in case of some
use-cases mentioned earlier) can reach the node that is switched to Firmware Upgrade mode.

For example some MCUs contain embedded ROM firmware that use CAN-bus based protocols for
flashing the firmware. The exact protocol is however not standardized across MCU vendors, therefore
not a helpful base to build on. There can also be different encodings that make the operation on the
same CAN bus segment as OpenLCB impossible. Sometimes even the bit rate would not be matching.

 3.2.5 Using a different bus
There can be many alternate methods of supplying data to a microcontroller in a hardware node, for
example through USB, UART, SPI, etc. Any such alternative connections would require on one hand
specialized hardware to be acquired by the end-user, on the other hand physical access to the board to
be upgraded. Standardizing on a secondary peripheral bus would also not be cost-effective to hardware
manufacturers. This solution fares as significantly inferior to anything natively OpenLCB.
Certain manufacturers or manufacturer groups using the same MCU technology may decide to expose
the native ICSP pins on headers matching the industry standards for the given MCU (for example
JTAG headers, AVR-ICSP or Microchip PicKit headers) as an in-house debugging tool that may be
used by expert customers with the necessary tools to recover hardware from a state where the
bootloader got corrupted. However, when the recommendations of this document are adhered to, there
should be no case where a device in the field can corrupt itself to this recovery need.

 3.2.6 Structured payload content
Please read Section 3.1 (Payload content format) before reading this section.

An important alternative to consider is to have the firmware file be supplied in a structured file format,
and require the CT to implement the parser of this file format, executing a series of operations on the
Target Node as part of the firmware upgrade process.

A straightforward choice for such a structured file format would be some variant of the HEX file
format, with the address space (including extra address bits commands) defining the memory space as
well as the offset to which to write the particular payload data. This would allow one firmware upgrade
operation to write to multiple memory spaces, or write to discontinuous areas of memory.

A helpful use-case of this option would be that the firmware upgrade can wipe the configuration
memory space. Writing the firmware code to different, discontinuous regions or non-zero offsets does
not seem to be a compelling use-case, since offset translation is trivial to do in the Bootloader
firmware. Wiping the configuration storage also does not seem to be a critical feature of firmware
upgrade, since all production node firmware must support the “factory reset” command which contains
code to do exactly this. Therefore making the firmware detect incorrect configuration memory contents
and perform the wipe automatically does not seem to be a major burden on the node developer.

The drawback of this approach is that a single file format needs to be agreed upon, and all CT
implementations will require code to interpret this file format. There are numerous different, similarly

Copyright 2015-2016. All rights reserved. See http://openlcb.org/Licensing.html for license terms. Page 8 of 11 - Feb 8, 2016

275

280

285

290

295

300

305

310

http://openlcb.org/Licensing.html

Submitted for public comment as NMRA Technical Note TN-9.7.4.4OpenLCB Firmware Upgrade Technical Note

looking but incompatible HEX file formats for example. There would also be a pressure of adding extra
features (such as sending checksums ahead of time, sending hardware detection information ahead of
time, etc) which would also increase the complexity of the CT. With an opaque binary payload all of
these features are the freedom and responsibility of the hardware manufacturer, the CT remains simple
and it is easy to support all possible nodes.

In summary, the benefits of this alternative are questionable while it introduces significant complexity
and thus we chose the simpler alternative to standardize. The desired additional features are achievable
to the manufacturers if they so choose by using the methods outlined in Section 3.1.

 4 Detailed interaction flow
This section describes the exact flow of packets between the Configuration Tool and the Target Node.
Each message is printed formatted for CAN-bus in GridConnect format for brevity, albeit the protocol
is not CAN-specific.

Legend:

• > packet: data sent from the CT to the Target Node

• < packet: data sent from the Target Node to CT.

• The Target Node will have alias 0x4AA on the bus, full node id of 1A.2A.3A.4A.5A.6A

• The CT node will have alias 0x3CC on the bus.

> :X1A4AA3CCN20A1EF; Memory Config datagram: Freeze Firmware Space (0xEF)

< :X19A284AAN03CC00; Datagram received OK. This message may be omitted.

< :X171A24AAN; ... There may be some alias allocation packets here.

< :X191004AAN1A2A3A4A5A6A; Node initialization complete.

> :X198283CCN04AA; PIP request to discover node capabilities

< :X196684AAN03CC700010000000; PIP reply; indicates streams are supported.

> :X1B4AA3CCN202000000000EFFF;
> :X1D4AA3CCN55;

Memory Config datagram: Stream write to space EF, offset 0,
source stream id 55.

< :X19A284AAN03CC80; Datagram received OK. Reply pending.

< :X1B3CC4AAN203000000000EF5A;
< :X1D3CC4AAN55;

Memory Config datagram: Stream Write Reply OK, space EF,
offset 0 dest stream ID 5A, source stream ID 55.

> :X19A283CCN04AA00 Datagram Received OK, no reply.

Copyright 2015-2016. All rights reserved. See http://openlcb.org/Licensing.html for license terms. Page 9 of 11 - Feb 8, 2016

315

320

325

330

http://openlcb.org/Licensing.html

Submitted for public comment as NMRA Technical Note TN-9.7.4.4OpenLCB Firmware Upgrade Technical Note

> :X19CC83CCN04AAFFFF000055; Stream initiate request; maximum buffer 64k-1, stream src id 55

< :X198684AAN03CC01008000555A; Stream initiate reply OK; buffer 256, src id 55, dst id 5A

> :X1F4AA3CCN5AA5456112B50B99;
> :X1F4AA3CCN5AB077952FF3138E;
> ...
> :X1F4AA3CCN5A97A0A4CC;

Stream data for dst stream 5A
(total of 256 bytes)

< :X198884AAN03CC555A0000; Stream continue

... May add more stream data here

> :X198A83CCN04AA555A; Stream close

> :X1A4AA3CCN20A0EF; Memory Config Datagram: Unfreeze Firmware space (0xEF)

< :X19A284AAN03CC; Datagram Received OK. This message may be omitted.

< :X171A24AAN; ... There may be some alias allocation packets here.

< :X191004AAN1A2A3A4A5A6A; Node initialization complete.

Copyright 2015-2016. All rights reserved. See http://openlcb.org/Licensing.html for license terms. Page 10 of 11 - Feb 8, 2016

http://openlcb.org/Licensing.html

Submitted for public comment as NMRA Technical Note TN-9.7.4.4OpenLCB Firmware Upgrade Technical Note

Table of Contents
 1 Introduction.. 1

 1.1 Served Use Cases... 2
 1.2 Unserved Use Cases... 2

 2 Annotations to the Standard... 3
 2.1 Introduction.. 3
 2.2 Intended Use...3
 2.3 References and Context..3
 2.4 Message Formats..3
 2.5 States.. 3
 2.6 Interactions... 3

 2.6.1 Definitions.. 3

 2.6.2 State transitions...4

 2.6.3 Data Transfer.. 5

 3 Background.. 6
 3.1 Payload content format...6
 3.2 Alternatives considered.. 7

 3.2.1 Using Datagram-based Memory Configuration writes...7

 3.2.2 Using a directly initiated stream... 7

 3.2.3 Using custom protocol instead of Memory Configuration... 8

 3.2.4 Using non-OpenLCB messages..8

 3.2.5 Using a different bus...8

 3.2.6 Structured payload content... 8

 4 Detailed interaction flow..9

Copyright 2015-2016. All rights reserved. See http://openlcb.org/Licensing.html for license terms. Page 11 of 11 - Feb 8, 201615

http://openlcb.org/Licensing.html

	Adopted as a NMRA Technical Note
	Version History
	Introduction
	1.1 Served Use Cases
	1.2 Unserved Use Cases

	2 Annotations to the Standard
	2.1 Introduction
	2.2 Intended Use
	2.3 References and Context
	2.4 Message Formats
	2.5 States
	2.6 Interactions
	2.6.1 Definitions
	2.6.2 State transitions
	2.6.3 Data Transfer

	3 Background
	3.1 Payload content format
	3.2 Alternatives considered
	3.2.1 Using Datagram-based Memory Configuration writes
	3.2.2 Using a directly initiated stream
	3.2.3 Using custom protocol instead of Memory Configuration
	3.2.4 Using non-OpenLCB messages
	3.2.5 Using a different bus
	3.2.6 Structured payload content

	4 Detailed interaction flow

