Adopted as a NMRA Standard
The OpenLCB Standard document appended to this cover sheet has been formally adopted as a NMRA Standard by the NMRA Board of Directors on the date shown in the Adopted column in the Version History table below.

Version History

<table>
<thead>
<tr>
<th>Date</th>
<th>Adopted</th>
<th>Summary of Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feb 17, 2015</td>
<td>Feb 20, 2016</td>
<td>Initial version submitted for public comment</td>
</tr>
</tbody>
</table>
| Apr 25, 2021 | July 2, 2021 | Changed LCC logo to include the ® symbol
Changed “Layout Command Control” to have the ™ symbol
Added the NMRA Legal Disclaimer fine-print
Changed the OpenLCB license to “Creative Commons Attribution-ShareAlike 4.0 International” |
Important Notices and Disclaimers Concerning NMRA Standards Documents

The Standards (S), Recommended Practices (RP), Technical Note (TN) and Technical Information (TI) documents of the National Model Railroad Association ("NMRA Standards documents") are made available for use subject to important notices and legal disclaimers. These notices and disclaimers, or a reference to this page, appear in all standards and may be found under the heading "Important Notices and Disclaimers Concerning NMRA Standards Documents."

Notice and Disclaimer of Liability Concerning the Use of NMRA Standards Documents

NMRA Standards documents are developed within the Standards and Conformance Department of the NMRA in association with certain Working Groups, members, and representatives of manufacturers and sellers. NMRA develops its standards through a consensus development process, which brings together volunteers representing varied viewpoints and interests to achieve the final product. NMRA Standards documents are developed by volunteers with modeling, railroading, engineering, and industry-based expertise. Volunteers are not necessarily members of NMRA, and participate without compensation from NMRA.

NMRA does not warrant or represent the accuracy or completeness of the material contained in NMRA Standards documents, and expressly disclaims all warranties (express, implied and statutory) not included in this or any other document relating to the standard or recommended practice, including, but not limited to, the warranties of: merchantability; fitness for a particular purpose; non-infringement; and quality, accuracy, effectiveness, currency, or completeness of material. In addition, NMRA disclaims any and all conditions relating to results and workmanlike effort. In addition, NMRA does not warrant or represent that the use of the material contained in NMRA Standards documents is free from patent infringement. NMRA Standards documents are supplied "AS IS" and "WITH ALL FAULTS."

Use of NMRA Standards documents is wholly voluntary. The existence of an NMRA Standard or Recommended Practice does not imply that there are no other ways to produce, test, measure, purchase, market, or provide other goods and services related to the scope of the NMRA Standards documents. Furthermore, the viewpoint expressed at the time that NMRA approves or issues a Standard or Recommended Practice is subject to change brought about through developments in the state of the art and comments received from users of NMRA Standards documents.

In publishing and making its standards available, NMRA is not suggesting or rendering professional or other services for, or on behalf of, any person or entity, nor is NMRA undertaking to perform any duty owed by any other person or entity to another. Any person utilizing any NMRA Standards document, should rely upon their own independent judgment in the exercise of reasonable care in any given circumstances or, as appropriate, seek the advice of a competent professional in determining the appropriateness of a given NMRA Standards document.

IN NO EVENT SHALL NMRA BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO: THE NEED TO PROCUERE SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE PUBLICAION, USE OF, OR RELIANCE UPON ANY STANDARD OR RECOMMENDED PRACTICE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE AND REGARDLESS OF WHETHER SUCH DAMAGE WAS FORESEEABLE.

Translations

NMRA’s development of NMRA Standards documents involves the review of documents in English only. In the event that an NMRA Standards document is translated, only the English version published by NMRA is the approved NMRA Standards document.

Official Statements

A statement, written or oral, that is not processed in accordance with NMRA policies for distribution of NMRA communications, or approved by the Board of Directors, an officer or committee chairperson, shall not be considered or inferred to be the official position of NMRA or any of its committees and shall not be considered to be, nor be relied upon as, a formal position of NMRA.

Comments on Standards

Comments for revision of NMRA Standards documents are welcome from any interested party, regardless of membership. However, NMRA does not provide interpretations, consulting information, or advice pertaining to NMRA Standards documents.

Suggestions for changes in documents should be in the form of a proposed change of text, together with appropriate supporting comments. Suggestions for changes in documents represent a consensus of concerned interests, it is important that any responses to comments and questions also receive the concurrence of a balance of interests. For this reason, NMRA, its departments, Working Groups or committees cannot provide an instant response to comments, or questions except in those cases where the matter has previously been addressed. For the same reason, NMRA does not respond to interpretation requests. Any person who would like to participate in evaluating comments or in revisions to NMRA Standards documents may request participation in the relevant NMRA working group.

Laws & Regulations

Users of NMRA Standards documents should consult all applicable laws and regulations. Compliance with the provisions of any NMRA Standards document does not constitute compliance to any applicable regulatory requirements. Implementers of the standard are responsible for observing or referring to the applicable regulatory requirements. NMRA does not, by the publication of NMRA Standards documents, intend to urge action that is not in compliance with applicable laws, and NMRA Standards documents may not be construed as doing so.

Copyrights

NMRA Standards documents are copyrighted by NMRA under US and international copyright laws. They are made available by NMRA and are adopted for a wide variety of both public and private uses. These include both use, by reference, in laws and regulations, and use in private self-regulation, standardization, and the promotion of modeling, structural and engineering practices and methods. By making NMRA Standards documents available for use and adoption by public authorities and private users, NMRA does not waive any rights in copyright to the NMRA Standards documents.

IMPORTANT NOTICE

NMRA Standards documents do not guarantee or ensure safety, security, health, or environmental protection, or ensure against interference with or from other systems, devices or networks. NMRA Standards documents development activities consider research and information presented to the standards development group in developing any safety recommendations. Other information about safety practices, changes in technology or technology implementation, or impact by peripheral systems also may be pertinent to safety considerations during implementation of the standard. Implementers and users of NMRA Standards documents are responsible for determining and complying with all appropriate safety, security, environmental, health, and interference protection practices and all applicable laws and regulations.
1 Introduction (Informative)
The OpenLCB suite of protocols can be used on multiple physical transports; this document defines the specifics that relate to using a CAN bus segment as a transport layer. The CAN protocol is frame based, so OpenLCB messages on a CAN bus segment are expressed as frames. This Standard defines unique headers to prevent CAN arbitration errors and frame loss, and to provide message traceability, node addressing and priority management.

2 Intended Use (Informative)
This Standard is intended for use whenever OpenLCB nodes are communicating on a single CAN segment. It is not intended to cover OpenLCB communications over other types of communications links.

3 References and Context (Normative)
In this document, the term "OpenLCB-CAN" refers to details of OpenLCB nodes that are specific to using a CAN transport, as opposed to generic OpenLCB protocol or OpenLCB using other transports.

This Standard should be interpreted in the context of the following OpenLCB Standards:

- The OpenLCB CAN Physical Layer Standard, which specifies the physical layer for transporting OpenLCB-CAN frames
- The OpenLCB Unique Identifiers Standard, which specifies the mechanism(s) for providing a unique identifier for each node

“CAN” refers to the electrical and protocol specifications as defined in ISO 11898-1:2003 and ISO 11898-2:2003 and their successors.

Each OpenLCB node (independent of transport layer in use) shall have a unique identifier. When using a CAN bus transport, that identifier shall be used as its node identifier (NodeID).

4 Frame Format (Normative)
OpenLCB-CAN frames shall be sent and received using only the CAN extended format (29-bit header).

OpenLCB-CAN nodes shall operate properly when the CAN segment carries error-free standard-format (11-bit header) frames.

OpenLCB-CAN nodes shall not transmit extended-format remote frames (frames with RTR set). Nodes shall operate properly when the CAN segment carries extended-format remote frames.
Nodes shall operate properly when the CAN segment carries overload frames.

The most-significant bit of each OpenLCB-CAN frame is reserved for future use. It shall be transmitted as a 1 bit, and ignored upon receipt.

The second-most-significant bit is the Frame Type indicator. A value of 0 indicates a CAN-specific Control Frame. A value of 1 indicates an OpenLCB Message.

The next 15 bits are the Variable Field. The format and contents of the Variable Field depends on the Frame Type bit value. Section 6.1 Control Frame Format of this document defines the Variable Field content for CAN Control Frames. The OpenLCB Message content is defined in the OpenLCB Message Standard(s).

The least significant twelve bits are the Source Node ID Alias value of the source (sending) node.

<table>
<thead>
<tr>
<th>Bit number(^1):</th>
<th>Bit 28</th>
<th>Bit 27</th>
<th>Bits 26-12</th>
<th>Bits 11-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Content:</td>
<td>Reserved: Send as 1, ignore upon receipt</td>
<td>Frame Type 1: OpenLCB Message</td>
<td>Variable Field</td>
<td>Source NID Alias</td>
</tr>
<tr>
<td>Mask:</td>
<td>0x1000,0000</td>
<td>0x0800,0000</td>
<td>0x0F00,0000</td>
<td>0x0000,0FFF</td>
</tr>
<tr>
<td>Location:</td>
<td>Solo top bit</td>
<td>Top bit of 6(^{th}) nibble from right</td>
<td>3 bits, then three nibbles</td>
<td>Right-most three nibbles</td>
</tr>
</tbody>
</table>

Table 1: Frame Format

After the header, the frame shall contain from zero to eight bytes of data. Length and content are defined by specific frame and message definitions elsewhere.

5 States

The frame transfer layer of a node has two states:

- Inhibited
- Permitted

Nodes shall start in the Inhibited state.

A node in the Inhibited state may transmit Check ID, Reserve ID, and Alias Map Definition frames. A node in the Inhibited state shall not transmit any other frame type.

Nodes in Permitted state may transmit any frame type.

\(^1\)See the OpenLCB Common Information Technical Note for detailed conventions on bit and byte numbering. Briefly, the least significant bit of a field is numbered with zero in OpenLCB descriptions, but note that other technologies may use other conventions.
6 CAN-specific Control Frames and Interactions (Normative)

OpenLCB CAN control frames shall be carried in frames with a 0 in the Frame Type field.

6.1 Control Frame Format

The format and contents of CAN-specific Control frames are defined in the following table:

<table>
<thead>
<tr>
<th>Name</th>
<th>Variable Field</th>
<th>Source Alias</th>
<th>Data Bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Check ID (CID) frame</td>
<td>0bMMM,NNNN,NNNN,NNNN</td>
<td>sss</td>
<td>None</td>
</tr>
<tr>
<td>MMM is the frame sequence number, with valid values from 0x7 through 0x4 or, for non-OpenLCB protocols, down to 0x1. NNNN,NNNN,NNNN is the 12-bit Node ID section being checked.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reserve ID (RID) frame</td>
<td>0x0700</td>
<td>sss</td>
<td>None</td>
</tr>
<tr>
<td>Alias Map Definition (AMD) frame</td>
<td>0x0701</td>
<td>sss</td>
<td>Full Node ID</td>
</tr>
<tr>
<td>Alias Mapping Enquiry (AME) frame</td>
<td>0x0702</td>
<td>sss</td>
<td>Optional Full Node ID</td>
</tr>
<tr>
<td>Alias Map Reset (AMR) frame</td>
<td>0x0703</td>
<td>sss</td>
<td>Full Node ID</td>
</tr>
<tr>
<td>Error Information Report 0-3</td>
<td>0x0710 – 0x713</td>
<td>sss</td>
<td>Full Node ID</td>
</tr>
<tr>
<td>Reserved; shall not be sent, and shall be ignored upon receipt</td>
<td>All others</td>
<td>sss</td>
<td>To be defined</td>
</tr>
</tbody>
</table>

Table 2: Control Frame Format

6.2 Interactions

This section describes the interactions which use the above frames.

6.2.1 Reserving a Node ID Alias

To reserve a Node ID alias while in the Inhibited state, a node shall:

- Generate a tentative source Node ID alias value
- Transmit a Check ID frame (CID) with MMM = 0x7, NNNN, NNNN, NNNN = bits 36-47 of the full Node ID in the Variable Field, and the tentative source Node ID alias value in the Source NID Alias field.
- Transmit a Check ID frame (CID) with MMM = 0x6, NNNN, NNNN, NNNN = bits 24-35 of the full Node ID in the Variable Field, and the tentative source Node ID alias value in the Source NID Alias field.
- Transmit a Check ID frame (CID) with MMM = 0x5, NNNN, NNNN, NNNN = bits 12-23 of the full Node ID in the Variable Field, and the tentative source Node ID alias value in the Source NID Alias field.
• Transmit a Check ID frame (CID) with \(MMM = 0x4 \), \(NNNN \), \(NNNN \), \(NNNN \) = bits 0-11 of the full Node ID in the Variable Field, and the tentative source Node ID alias value in the Source NID Alias field.
• Wait at least 200 milliseconds
• Transmit a Reserve ID frame (RID) with the tentative source Node ID alias value in the Source NID Alias field.

The alias is reserved when that sequence completes without error.

The node shall restart the process at the beginning if, before completion of the process, a frame is received that carries a source Node ID alias value that is identical to the alias value being tested by this procedure.

The node shall restart the process at the beginning if, before completion of the process, any error is encountered during frame transmission.

6.2.2 Transition to Permitted State
To transition from the Inhibited state to the Permitted state, a node shall, in order:
• Have or obtain a validly reserved Node ID alias
• Transmit an Alias Map Definition (AMD) frame with the node's Node ID alias and Node ID

6.2.3 Node ID Alias validation
A node in Permitted state receiving a Alias Mapping Enquiry frame shall compare the full Node ID in the CAN data segment to the node's own Node ID. If and only if they match in length and content and the receiving node is in Permitted state, the node shall reply with a Alias Map Definition frame carrying the node's full Node ID in the data segment of the frame.

A node in Permitted state receiving an Alias Mapping Enquiry frame with no data content shall reply with an Alias Map Definition frame carrying the node's full Node ID in the data segment of the frame.

A node in Inhibited state shall not reply to a Alias Mapping Enquiry frame.

6.2.4 Transition to Inhibited State
To transition from the Permitted state to the Inhibited state, a node shall successfully transmit an Alias Map Reset frame with the node's reserved Node ID alias and Node ID.

If a node receives an Alias Map Reset (AMR) frame referencing an alias for another node, the receiving node shall stop using that alias to refer to the AMR-sending node within 100 milliseconds.

6.2.5 Node ID Alias Collision Handling
A node shall compare the source Node ID alias in each received frame against all reserved Node ID aliases it currently holds. In case of a match, the receiving node shall:
• If the frame is a Check ID (CID) frame, send a Reserve ID (RID) frame in response.
• If the frame is not a Check ID (CID) frame, the node is in Permitted state, and the received source Node ID alias is the current Node ID alias of the node, the node shall immediately transition to Inhibited state, send an AMR frame to release and then stop using the current Node ID alias.
• If the frame is not a Check ID (CID) frame and the node is not in Permitted state, the node shall immediately stop using the matching Node ID alias.
• If the frame is not a Check ID (CID) frame and the received source Node ID alias is not the current Node ID alias of the node, the node shall immediately stop using the matching node ID alias.

6.2.6 Duplicate Node ID Handling
Each node shall compare the node ID in each received Alias Map Definition frame with its own Node ID. Should they match, in addition to any other actions that may be required by the incoming message, the node
• may, but is not required to, signal the user that duplicate Node ID values exist using a other directly-visible indicator
• if in Permitted state, may, but is not required to, notify other nodes of the condition by transmitting the CAN frame

[195B4sss] 01.01.00.00.00.00.02.01
where 'sss' is the current alias of the transmitting node. If that frame is emitted, the node is then required to not send any more CAN frames on the OpenLCB-CAN link until reset by the user.

6.2.7 Reporting CAN Link Status
When a node's CAN interface enters the “Error Passive” state from the “Error Active” state, it may, but is not required to, emit an Error Information Report 0 frame.
When a node's CAN interface enters the “Error Passive” state from the “Bus Off” state, it may, but is not required to, emit an Error Information Report 1 frame.
When a node's CAN interface enters the “Error Active” state from the “Error Passive” state, it may, but is not required to, emit an Error Information Report 2 frame.
When a node's CAN interface enters the “Error Active” state from the “Bus Off” state, it may, but is not required to, emit an Error Information Report 3 frame.
Nodes shall not emit a Error Information 0 through Error Information 3 frame except as described above.

6.3 Node ID Alias Generation
Alias values shall not be zero. Nodes shall not depend on other nodes properly handling zero values in the source and/or destination alias fields.
The first alias values generated by nodes of the same type with node ID values within 255 of each other shall not be identical.
An alias generation algorithm shall ensure that when two different nodes using that alias generation algorithm generate the same alias value at two different points in their sequence, there shall be more than a 99% probability that the next alias values generated by the two nodes are different.
A node may, but need not, save the current alias generation state so that it restarts the sequence at the same point, hence the same alias value, after a reset or power cycle.

\(^2\)This message is a Producer-Consumer Event Report (PCER) message with the reserved Event ID “Duplicate Node ID Detected”. More information is available in the OpenLCB Event Transport Standard and associated documentation.
Table of Contents

1 Introduction (Informative) .. 1
2 Intended Use (Informative) .. 1
3 References and Context (Normative) ... 1
4 Frame Format (Normative) .. 1
5 States .. 2
6 CAN-specific Control Frames and Interactions (Normative) ... 3
 6.1 Control Frame Format .. 3
 6.2 Interactions .. 3
 6.2.1 Reserving a Node ID Alias ... 3
 6.2.2 Transition to Permitted State .. 4
 6.2.3 Node ID Alias validation .. 4
 6.2.4 Transition to Inhibited State .. 4
 6.2.5 Node ID Alias Collision Handling ... 4
 6.2.6 Duplicate Node ID Handling .. 5
 6.2.7 Reporting CAN Link Status ... 5
6.3 Node ID Alias Generation .. 5